Artin exponent of finite groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Definition of the Artin Exponent of Finite Groups

The Artin exponent induced from cyclic subgroups of finite groups was studied extensively by T.Y. Lam in [5]. A Burnside ring theoretic version of the results in [5] for p-groups was given in [6]. Here we shall be interested in looking at the Artin exponent induced from the elementary abelian subgroups of finite p-groups using some results of A. Dress in [3].

متن کامل

COMPUTATIONAL RESULTS ON FINITE P-GROUPS OF EXPONENT P2

The Fibonacci lengths of the finite p-groups have been studied by R. Dikici and co-authors since 1992. All of the considered groups are of exponent p, and the lengths depend on the celebrated Wall number k(p). The study of p-groups of nilpotency class 3 and exponent p has been done in 2004 by R. Dikici as well. In this paper we study all of the p-groups of nilpotency class 3 and exponent p2. Th...

متن کامل

Linearity of Artin Groups of Finite Type

Recent results on the linearity of braid groups are extended in two ways. We generalize the Lawrence Krammer representation as well as Krammer’s faithfulness proof for this linear representation to Artin groups of finite type.

متن کامل

Automorphism Groups of Some Affine and Finite Type Artin Groups

We observe that, for fixed n ≥ 3, each of the Artin groups of finite type An, Bn = Cn, and affine type Ãn−1 and C̃n−1 is a central extension of a finite index subgroup of the mapping class group of the (n + 2)-punctured sphere. (The centre is trivial in the affine case and infinite cyclic in the finite type cases). Using results of Ivanov and Korkmaz on abstract commensurators of surface mapping...

متن کامل

Finite Quantum Groups over Abelian Groups of Prime Exponent

– We classify pointed finite-dimensional complex Hopf algebras whose group of group-like elements is abelian of prime exponent p, p > 17. The Hopf algebras we find are members of a general family of pointed Hopf algebras we construct from Dynkin diagrams. As special cases of our construction we obtain all the Frobenius–Lusztig kernels of semisimple Lie algebras and their parabolic subalgebras. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1968

ISSN: 0021-8693

DOI: 10.1016/0021-8693(68)90007-0